Powered By Blogger

Saturday, 15 October 2011

5.4 Solve Trigonometric Equation :

All about CALculations !!! :)





Example 1:    




$2sin\left( x\right) -1=0$

There are an infinite number of solutions to this problem. To solve for x, you must first isolate the sine term.



\begin{eqnarray*}&& \\
2\sin \left( x\right) -1 &=&0 \\
&& \\
\sin \left( x\right) &=&\displaystyle \frac{1}{2} \\
&& \\
&&
\end{eqnarray*}



We know that the $\sin \left( \displaystyle \frac{\pi }{6}\right) =\displaystyle \frac{1}{2},$therefore $x=\displaystyle \frac{\pi }{6}.$ The sine function is positive in quadrants I and II. The $\sin \left( \pi -\displaystyle \frac{\pi }{6}\right) =\sin \displaystyle \frac{5\pi }{6}$is also equal to $\displaystyle \frac{1}{2}.$ Therefore, two of the solutions to the problem are $x=\displaystyle \frac{\pi }{6}$and $x=\displaystyle \frac{5\pi }{6}.
$
Example 2:   




$2\sin\left( 3x\right) -1=0$





There are an infinite number of solutions to this problem. To solve for x, you must first isolate the sine term.

\begin{eqnarray*}&& \\
2\sin \left( 3x\right) -1 &=&0 \\
&& \\
\sin \left( 3x\right) &=&\displaystyle \frac{1}{2} \\
&& \\
&&
\end{eqnarray*}



If we restriction the domain of the sine function to $\left[ -\displaystyle \frac{\pi }{2}
\leq 3x\leq ,\displaystyle \frac{\pi }{2}\...
...[ -\displaystyle \frac{\pi }{6}\leq
x\leq ,\displaystyle \frac{\pi }{6}\right] $, we can use the inverse sine function to solve for reference angle 3x and then x.

\begin{eqnarray*}&& \\
\sin \left( 3x\right) &=&\displaystyle \frac{1}{2} \\
&...
...&=&\sin ^{-1}\left( \displaystyle \frac{1}{2
}\right) \\
&& \\
\end{eqnarray*}
\begin{eqnarray*}3x &=&\sin ^{-1}\left( \displaystyle \frac{1}{2}\right) \\
&& ...
...\
x &\approx &0.174532925\ \mbox{ radians }\\
&& \\
&& \\
&&
\end{eqnarray*}


We know that the $\sin $e function is positive in the first and the second quadrant. Therefore two of the solutions are the angle 3x that terminates in the first quadrant and the angle $\pi -3x$ that terminates in the second quadrant. We have already solved for 3x.
\begin{eqnarray*}&& \\
\sin \left( \pi -3x\right) &=&\displaystyle \frac{1}{2} ...
...-3x &=&\sin ^{-1}\left( \displaystyle \frac{1}{2}\right) \\
&&
\end{eqnarray*}
\begin{eqnarray*}&& \\
3x &=&\pi -\sin ^{-1}\left( \displaystyle \frac{1}{2}\ri...
... \\
&& \\
x &\approx &0.872665\ \mbox{ radians } \\
&& \\
&&
\end{eqnarray*}
The solutions are $x=\displaystyle \frac{1}{3}\sin ^{-1}\left( \displaystyle \frac{1}{2}\right) $ and $
x=\displaystyle \frac{\pi }{3}-\displaystyle \frac{1}{3}\sin ^{-1}\left( \displaystyle \frac{1}{2}\right) .\bigskip
\bigskip\bigskip $
Example 3.
Solve the equation image for 0 ≤ θ < 2π.

Solving for cos θ gives us:
image
If image, then the reference angle is α = 1.3181.
So for image, we have θ in the first and 4th quadrants. So
θ = 1.3181 or 4.9651
For image, we have θ in the 2nd and 3rd quadrants. So
θ = 1.8235 or 4.4597

So θ= 1.3181, 1.8235, 4.4597 or 4.9651 radians.

Example 4.
Solve the equation 6 sin2θ − sin θ − 1 = 0 for 0 ≤ θ < 2π.

Factoring the LHS:
6 sin2 θ − sin θ − 1 = 0
(2 sin θ − 1)(3 sin θ + 1) = 0
So either
2 sin θ − 1 = 0
sin θ = 1/2
θ will be in 1st and 2nd quadrants.
θ = 0.52360, 2.6180 (ie π/6, 5π/6)
Example 5. 
Solve the equation tan 2θ − cot 2θ = 0 for 0 ≤ θ < 2π.
image
tan2θ = 1


tan 2θ = ± 1

Since 0 ≤ θ < 2π , we need to consider values of 2θ such that 0 ≤ 2θ < 4π. Hence, solving the above equation, we have:

image
So

image
* For More :  http://tutorial.math.lamar.edu/Classes/CalcI/TrigEquations.aspx

No comments:

Post a Comment